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Abstract
A general notion of connections over a vector bundle map is considered,
and applied to the study of mechanical systems with linear nonholonomic
constraints and a Lagrangian of kinetic energy type. In particular, it is shown
that the description of the dynamics of such a system in terms of the geodesics
of an appropriate connection can be easily recovered within the framework
of connections over a vector bundle map. Also the reduction theory of these
systems in the presence of symmetry is discussed from this perspective.

PACS numbers: 45.20.-d, 02.40.Yy

Mathematics Subject Classification: 53Cxx, 37J60

1. Introduction

Inspired by some recent work by Fernandes on connections in Poisson geometry [5] and,
more generally, in the context of Lie algebroids [6], we have recently embarked on the study
of a general notion of connection, namely connections over a vector bundle map. This new
concept covers, besides the standard notions of linear and nonlinear connections, various
generalizations such as partial connections and pseudo-connections, as well as the Lie algebroid
connections considered by Fernandes. For a detailed treatment we refer to a forthcoming paper,
written in collaboration with Cantrijn [2]. After briefly sketching the main idea underlying the
notion of connection over a vector bundle map, the purpose of the present letter is to present
an application of this theory in the framework of nonholonomic mechanics.

Let M be a real (finite dimensional) C∞ manifold and ν : N → M a vector bundle over
M . Assume, in addition, that a linear bundle map ρ : N → TM is given such that τM ◦ρ = ν,
where τM denotes the natural tangent bundle projection TM → M . Note that we do not
require ρ to be of constant rank. Hence, the image set Im ρ need not be a vector subbundle
of TM but rather determines a generalized distribution as defined by Stefan and Sussmann
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(see, for example, [10, appendix 3]). Denoting the set of (local) sections of an arbitrary bundle
E over M by 	(E), it follows that ρ induces a mapping 	(N) → 	(TM) = X (M), which
we will also denote by ρ. Next, let π : E → M be an arbitrary fibre bundle overM . We may
then consider the pull-back bundle π̃1 : π∗N → E which is a vector bundle. Note that π∗N
may be regarded as a fibre bundle over N , with the projection denoted by π̃2 : π∗N → N . A
connection onE over ρ or, shortly, a ρ-connection onE, is then defined as a linear bundle map
h : π∗N → T E from π̃1 to τE , over the identity on E, such that, in addition, the following
diagram is commutative

(where T π denotes the tangent map of π ). The image set Im h determines a generalized
distribution on E which projects onto Im ρ. It is important to note that Im h may have a
nonzero intersection with the bundle VE of π -vertical tangent vectors to E. The standard
notion of connection is recovered when putting N = TM , ν = τM and ρ the identity map. In
caseP is a principalG-bundle overM , with right actionR : P ×G → P, (e, g) �→ R(e, g) =
Rg(e)(= eg), a ρ-connection h on P will be called a principal ρ-connection if, in addition, it
satisfies

T Rg(h(e, n)) = h(eg, n)

for all g ∈ G and (e, n) ∈ π∗N . Slightly modifying the construction described by Kobayashi
and Nomizu [7], given a principal ρ-connection on P , one can construct a ρ-connection on
any associated fibre bundle E.

Assume E is a vector bundle and let {φt } denote the flow of the canonical dilation vector
field on E. A ρ-connection h is then called a linear ρ-connection on E if

T φt (h(e, n)) = h(φt (e), n)

for all (e, n) ∈ π∗N . In [2] it is shown that such a linear ρ-connection can be characterized
by a mapping ∇ : 	(N) × 	(E) → 	(E), (s, σ ) �→ ∇sσ such that the following properties
hold:

(i) ∇ is R-linear in both arguments;
(ii) ∇ is C∞(M)-linear in s;

(iii) for any f ∈ C∞(M) and for all s ∈ 	(N) and σ ∈ 	(E) one has ∇s(f σ ) =
f∇sσ + (ρ ◦ s)(f )σ .

It immediately follows that ∇sσ (m) only depends on the value of s atm, and therefore we may
also write it as ∇s(m)σ . Clearly, ∇ plays the role of the covariant derivative operator in the case
of an ordinary linear connection. Henceforth, we will also refer to ∇ as a linear ρ-connection.
Let k and � denote the fibre dimensions of N and E, respectively, and let {sα : α = 1, . . . , k},
resp. {σA : A = 1, . . . , �}, be a local basis of sections of ν, resp. π , defined on a common open
neighbourhood U ⊂ M . Then we have ∇sασA = 	AαB σ

B , for some functions 	AαB ∈ C∞(U),
called the connection coefficients of the given ρ-connection.

In order to associate a notion of parallel transport with linear ρ-connections, we first need
to introduce a special class of curves in N . A smooth curve c̃ : I → N , defined on a closed
interval I ⊂ R, is called admissible if for all t ∈ I , one has ċ(t) = (ρ ◦ c̃)(t), where c = ν ◦ c̃
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is the projected curve on M . Curves in M that are projections of admissible curves in N are
called base curves. Note that, in principle, a base curve may reduce to a point.

As in standard connection theory, with any linear ρ-connection ∇ on a vector bundle
π : E → M , and any admissible curve c̃ : [a, b] → N , one can associate an operator ∇c̃,
acting on sections of π defined along the base curve c = ν ◦ c̃. More precisely, let σ be such
a section, i.e. σ : [a, b] → E with π ◦ σ = c, then we may put (∇c̃σ )(t) = ∇c̃(t)σ for all
t ∈ [a, b]. A section σ , defined along the base curve of an admissible curve c̃, will be called
parallel along c̃ if ∇c̃(t)σ = 0 for all t . In coordinates, this yields a system of linear differential
equations for the components of σ and, again using standard arguments, one can show that
this leads to a notion of parallel transport on E along admissible curves in N (cf [2] for more
details).

As an application of the above formalism, we will consider a mechanical system consisting
of a free particle subjected to some linear nonholonomic constraints.

2. Nonholonomic mechanics

Let g be a Riemannian metric on an n-dimensional manifold M . Consider a free particle,
with configuration space M and Lagrangian L : TM → R, v �→ L(v) = 1/2g(v, v). It is
well known that the equation of motion can be written as the geodesic equation ∇g

ċ ċ(t) = 0,
where ∇g is the Levi-Civita connection corresponding to g. Suppose now that the system
is subjected to n − k (independent) linear nonholonomic constraints, defining a regular non-
integrable k-dimensional distribution Q on M . We then have a direct sum decomposition
TM = Q ⊕ Q⊥, where Q⊥ is the orthogonal complement of Q with respect to the given
metric g. The projections of TM ontoQ andQ⊥ will be denoted by πQ and π⊥

Q , respectively.
It is well known that the solution curves of the nonholonomic free particle are curves c in M
satisfying the equation πQ(∇g

ċ ċ(t)) = 0, together with the constraint condition ċ(t) ∈ Q for
all t (see, for instance, [9]). Furthermore, one can define a linear connection ∇̄ onM according
to ∇̄XY = ∇g

XY + (∇g

XπQ⊥)(Y ) for X, Y ∈ X (M). This connection restricts to Q and the
equation of motion of the nonholonomic free particle can be rewritten as ∇̄ċ ċ(t) = 0, with
initial velocity taken in Q (see [1, 9]).

We now reconsider the nonholonomic free particle from the point of view of connections
over a vector bundle map. Let i : Q → TM denote the natural embedding of Q into TM . In
the sequel we will identifyX ∈ 	(Q)with T i ◦X, regarded as a vector field onM . In terms of
the notations used above, we consider the following situation: N = E = Q, ν = π = (τM)|Q
and ρ = i. We may now define a linear connection ∇nh : 	(Q) × 	(Q) → 	(Q) over i on
the vector bundle π : Q → M by the prescription

∇nh
X Y = πQ∇g

XY

where the superscript ‘nh’ stands for ‘nonholonomic’. It is easily seen that this indeed
determines a linear i-connection and that, moreover, ∇nh

X Y = ∇̄XY for X, Y ∈ 	(Q).
Admissible curves in this setting are curves c̃ in Q that are prolongations of curves in M ,
i.e. c̃(t) = ċ(t) for some curve c inM . Note that for any base curve c, ċ may be regarded here
both as an admissible curve in Q and as a section of π defined along c. It follows that the
equation of motion of the given nonholonomic problem can be written as ∇nh

ċ ċ(t) = 0, where
c is a curve in M tangent to Q.

The restriction of the given Riemannian metric g on M to sections of Q defines a bundle
metric on Q which we denote by go. The i-connection ∇nh considered above now admits the
following characterization.
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Proposition 1. ∇nh is uniquely determined by the conditions that it is ‘metric’, i.e. for all
X, Y,Z ∈ 	(Q) one has

X(go(Y, Z)) = go(∇nh
X Y,Z) + go(Y,∇nh

X Z)

and that it satisfies

∇nh
X Y − ∇nh

Y X = πQ[X, Y ]

for all X, Y ∈ 	(Q).

Proof. First we prove that ∇nh satisfies both conditions. Using the fact that ∇g is metric for
g, and regarding sections of Q as vector fields on M , we find

X(go(Y, Z)) = X(g(Y,Z))

= g(∇g

XY, Z) + g(Y,∇g

XZ)

= go(∇nh
X Y,Z) + go(Y,∇nh

X Z)

where the last equality follows from the fact that g(X, Y ) = 0 whenever X ∈ 	(Q) and
Y ∈ 	(Q⊥). The second condition follows from the symmetry property of ∇g (i.e. ∇g has
zero torsion).

Conversely, let ∇ be an arbitrary linear i-connection that satisfies both conditions. One
then easily derives that for any chosen X, Y ∈ 	(Q) and all Z ∈ 	(Q)
2go(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z))− Z(g(X, Y ))

+g(πQ[X, Y ], Z)− g(πQ[X,Z], Y )− g(X, πQ[Y,Z])

= 2g(∇g

XY, Z)

from which one readily deduces that ∇XY = πQ∇g

XY , i.e. ∇ ≡ ∇nh. �

It is easily proven that if Q is an integrable distribution defining a foliation of M (i.e. the
given constraints are holonomic), then the connection ∇nh induces the Levi-Civita connection
on the leaves of this foliation with respect to the induced metric.

From the fact that the nonholonomic connection ∇nh is metric it follows that for any
X, Y ∈ 	(Q)

X(go(X, Y )) = go(∇nh
X X, Y ) + go(X,∇nh

X Y ).

The second term on the right-hand side can be rewritten as

go(X,∇nh
X Y ) = go(X,∇nh

Y X) + g(X, [X, Y ])

= 1
2LY (g(X,X)) + g(X, [X, Y ])

= 1
2 (LY g)(X,X)

where L denotes the Lie derivative operator. With any given Y ∈ 	(Q) one can associate a
function JY on Q, given by JY (Xm) := go(Xm, Y (m)), for all m ∈ M and Xm ∈ Qm. Using
the preceding identities, and considering a base curve c inM which is ‘geodesic’ with respect
to ∇nh (i.e. a solution of the nonholonomic equations), one easily derives that

d

dt
(JY (ċ))(t) = 1

2
(LY g)(ċ(t), ċ(t)).

This equation implies that every section Y ofQ which, regarded as a vector field onM , leaves
the metric g invariant (i.e. is a Killing vector field) determines a conserved quantity for the
given nonholonomic system.
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3. Reduction of the nonholonomic free particle with symmetry

Let G be a Lie group defining a free and proper right action on M , denoted by Ra :
M → M,m �→ Ra(m) = ma, for all a ∈ G, such that we have a principal fibre bundle
M

µ→ M̂ := M/G. Assume this action leaves invariant both the Riemannian metric g and the
constraint distribution Q, i.e. R∗

ag = g and T Ra(Q) ⊂ Q for all a ∈ G. We already know
from above that the equations of motion of the nonholonomic free particle are given by the
‘geodesic’ equations: ∇nh

ċ ċ(t) = 0. Using the symmetry assumption (i.e. the G-invariance of
g andQ), it is easily proven that if c(t) is a solution, so is c(t)a for all a ∈ G. Therefore, one
obtains equivalence classes of solutions, where two solutions c1 and c2 are called equivalent
iff c1 = c2a for some a ∈ G. In the reduction procedure described below, it is our intention to
construct a reduced connection over a suitable vector bundle map, such that the corresponding
‘geodesics’ are precisely these equivalence classes.

First of all, we note that the set Q/G, the quotient space of Q under the lifted action of
G on Q, admits a vector bundle structure over M̂ , with projection τ : Q/G → M̂ defined
by τ([Xm]) = µ(m). Here, [Xm] represents the G-orbit of Xm ∈ Q under the lifted right
action. Using the fact that this action on Q is fibre linear, and relying on the local triviality
of the principal bundle M → M̂ , one can verify that τ indeed determines a vector bundle
structure (see, for example, [11, p 29]). Next, we define a map ρ : Q/G → T M̂ according to
ρ([Xm]) := T µ(Xm). Once again one can easily see that this map is well defined (i.e. does
not depend on the chosen representativeXm of [Xm]) and is fibred over the identity on M̂ . We
now first construct a principal ρ-connection onM which, subsequently, will be used to define
a linear ρ-connection on Q/G.

Let h : µ∗(Q/G) → TM : (m, [Xm]) → Xm, i.e. we take the image h(m, [Xm]) to be
the unique tangent vector atm belonging to the equivalence class [Xm]. Since the action ofG
is free, it immediately follows that h is well defined and, moreover, Im h = Q. We can also
verify that h(ma, [Xm]) = T Ra(Xm) = T Ra(h(m, [Xm])) and T µ(h(m, [Xm])) = ρ([Xm]).
Consequently, h determines a principal ρ-connection on M (see the definition above).

Note that sections of the bundle τ : Q/G → M̂ can be put into one-to-one correspondence
with the set of right invariant vector fields on M taking values in Q (i.e. the right equivariant
sections of Q → M). Indeed, for ψ ∈ 	(Q/G) and m ∈ M such that µ(m) ∈ dom ψ , put

ψh(m) := h(m,ψ(µ(m))).

Then ψh is a G-equivariant section of Q. On the other hand, let X be a right invariant vector
field on M with values in Q. Then, define an element Xh of 	(Q/G) by

Xh(m̂) = [Xm]

withm ∈ µ−1(m̂). Clearly, this does not depend on the choice ofm in the fibre over m̂. Thus,
by means of h we have established a bijective correspondence between 	(Q/G) and the set
ofG-equivariant sections ofQ → M . For the following derivation of a reduced ρ-connection
on Q/G, we may refer to Cantrijn et al [1] where, at least for the so-called Chaplygin case, a
similar construction has been made in terms of ‘ordinary’ connections and, therefore, we will
not enter into details. For completeness, however, we recall the following useful properties.
Firstly, from the G-invariance of g one can deduce that the vector field ∇g

XY is right invariant
whenever X, Y ∈ X (M) are right invariant, and that πQ : TM → Q commutes with T Ra for
any a ∈ G. Secondly, the symmetry assumptions also imply that the induced bundle metric
go on Q is G-invariant and, hence, determines a reduced bundle metric ĝo on Q/G. Using h
we can construct ĝo as follows: for any φ,ψ ∈ 	(Q/G) put

ĝo(m̂)(φ(m̂), ψ(m̂)) := go(m)(φh(m),ψh(m))
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with m ∈ µ−1(m̂). Let a ∈ G, then

go(ma)(φh(ma), ψh(ma)) = g(ma)(T Raφ
h(m), T Raψ

h(m))

= go(m)(φh(m),ψh(m))

where, again, we have relied on the G-invariance of g. From this we may conclude that ĝo is
indeed well defined.

Let ∇nh be the nonholonomic connection over i, introduced in the previous section. We
now construct a linear ρ-connection on the bundleQ/G, as follows: for any ψ, φ ∈ 	(Q/G)
put

∇̂nh
ψ φ = (∇nh

ψhφ
h)h.

Again, one may check that this is well defined and verifies the conditions of a linear ρ-
connection.

Proposition 2. The linearρ-connection ∇̂nh is metric with respect to the reduced bundle metric
ĝo on Q/G, and satisfies the property

∇̂nh
ψ φ − ∇̂nh

φ ψ − [ψ, φ] = 0

where, by definition, [ψ, φ] := (πQ[ψh, φh])h.

Proof. For any ψ ∈ 	(Q/G), we have that ψh is µ-related to ρ ◦ ψ as vector fields on M
and M̂ , respectively. Using this, together with the properties of ∇nh, we can prove that ∇̂nh is
metric with respect to ĝo. Indeed, let ψ, φ, η ∈ 	(Q/G), then

(ρ ◦ ψ)(ĝo(φ, η)) ◦ µ = ψh(ĝo(φ, η) ◦ µ)
= ψh(go(φh, ηh))

= go(∇nh
ψhφ

h, ηh) + go(φh,∇nh
ψhη

h)

= (
ĝo(∇̂nh

ψ φ, η) + ĝo(φ, ∇̂nh
ψ η)

) ◦ µ
from which the result readily follows.

The second property can also be proven in a straightforward manner. �
It is also not difficult to verify that ∇̂nh is uniquely determined by the two properties

mentioned in the proposition.
To complete the reduction picture, it can be proven that every solution of the geodesic

equation for ∇nh projects onto a solution of the ‘geodesic problem’ for the reduced
nonholonomic connection ∇̂nh in the following sense. Assume that c is a solution of the
nonholonomic equations, i.e. ∇nh

ċ ċ(t) = 0. Consider the curve ĉ = µ ◦ c in M̂ . Then the
section [ċ](t) = [ċ(t)] ofQ/G along ĉ is autoparallel with respect to the ρ-connection ∇̂nh, i.e.
∇̂nh

[ċ][ċ](t) = 0. This follows from the fact that for eachm ∈ M , h(m, .) : τ−1(µ(m)) → TmM

is injective and that for any base curve c in M

h
(
c(t), ∇̂nh

[ċ][ċ](t)
) = ∇nh

ċ ċ(t) ∀t.
On the other hand, any solution [ċ] of the equation ∇̂nh

[ċ][ċ](t) = 0 determines an equivalence
class of solutions of the initial nonholonomic problem on M . Given any point c0 in
µ−1(τ ([ċ](0))), a unique curve c in M can be constructed which is horizontal with respect
to the principal ρ-connection h on M , i.e. c satisfies for all t : ċ(t) = h(c(t), [ċ](t)) with the
initial condition c(0) = c0 (note that [ċ(t)] = [ċ](t)). It is easily seen that µ(c) = τ([ċ]) and
from this we can deduce ∇nh

ċ ċ(t) = 0.
We conclude that the set of equivalence classes of solutions of the free nonholonomic

mechanical problem in M is in a one-to-one correspondence with the set of solutions of
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autoparallel admissible curves with respect to the reduced nonholonomic connection (i.e. using
the principal ρ-connection h).

To close this section, we note that much of the preceding discussion can be easily extended
to more general nonholonomic systems with symmetry, admitting forces derivable from a G-
invariant potential energy function.

4. Final remarks

Our approach to the reduction problem of a nonholonomic free particle with symmetry, using
the generalized notion of connections over a bundle map, differs from other approaches in
that we do not have to make any assumption regarding the (constant) rank of the constraint
distribution Q. In treatments of the so-called Chaplygin case, for instance, the assumption is
that Q is the horizontal distribution of a principal G-connection (see, for example, [1, 4, 8]),
i.e. besides being G-invariant Q also satisfies TM = Q⊕ ker T µ. In the more general case
treated, for example, by Cendra et al [3], it is assumed that TM = Q + ker T µ (but one may
have Q ∩ ker T µ �= {0}). In our treatment we only require G-invariance of Q.

Finally, in a forthcoming paper devoted to the use of the concept of a connection over
a vector bundle map in sub-Riemannian geometry, it will be demonstrated that the above
application to nonholonomic mechanics may also shed some new light on the relationship
between the so-called ‘vakonomic’ and the ‘nonholonomic’ treatment of systems with
constraints.

This work was supported by a grant from the ‘Bijzonder Onderzoeksfonds’ of Ghent University.
I would also like to thank Frans Cantrijn for many useful discussions and for the necessary
and professional guidance throughout my research.
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